An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 1.4 days after apogee (on August 8, 1934, at 22:10 UTC), the Moon's apparent diameter was smaller.
Annularity was visible from Portuguese West Africa, South West Africa, Rhodesia, Bechuanaland Protectorate, Mozambique, Transvaal, and Swaziland. A partial eclipse was visible for parts of Southern Africa, Central Africa, East Africa, and Antarctica.
Eclipse details
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
Eclipses in 1934
- A partial lunar eclipse on January 30.
- A total solar eclipse on February 14.
- A partial lunar eclipse on July 26.
- An annular solar eclipse on August 10.
Metonic
- Preceded by: Solar eclipse of October 21, 1930
- Followed by: Solar eclipse of May 29, 1938
Tzolkinex
- Preceded by: Solar eclipse of June 29, 1927
- Followed by: Solar eclipse of September 21, 1941
Half-Saros
- Preceded by: Lunar eclipse of August 4, 1925
- Followed by: Lunar eclipse of August 15, 1943
Tritos
- Preceded by: Solar eclipse of September 10, 1923
- Followed by: Solar eclipse of July 9, 1945
Solar Saros 144
- Preceded by: Solar eclipse of July 30, 1916
- Followed by: Solar eclipse of August 20, 1952
Inex
- Preceded by: Solar eclipse of August 30, 1905
- Followed by: Solar eclipse of July 20, 1963
Triad
- Preceded by: Solar eclipse of October 9, 1847
- Followed by: Solar eclipse of June 10, 2021
Solar eclipses of 1931–1935
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.
The partial solar eclipses on April 18, 1931 and October 11, 1931 occur in the previous lunar year eclipse set, and the solar eclipses on January 5, 1935 (partial), June 30, 1935 (partial), and December 25, 1935 (annular) occur in the next lunar year eclipse set.
Saros 144
This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Inex series
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Notes
References
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
- Google interactive map
- Besselian elements



